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Abstract—In this paper, we present FollowMe, a new system
that allows one sensorless robot to autonomously follow another
autonomous robot that has multiple sensors. By offloading both
the localization and planning computations to the main robot, we
are able to maintain a very small hardware requirement on the
follower robot (i.e. it only needs to be able to drive). FollowMe
works irrespective of what system it is run on and assumes that
the main robot has some method of localizing itself and the
follower robot, as well as software for navigation (driving itself
to a target point). Given this, we can run FollowMe on different
kinds of robots, as we have done through our tests on both
physical and simulated robots.

The FollowMe system is comprised of three main components.
The first is the State Machine that takes input from arbitrary
localization sources and coordinates through the PathSplitter
algorithm to dynamically segment a given path into sequential
target positions for each robot. Then, the Evaluator adjusts
parameters for both following and path splitting depending on
the following performance. As such, FollowMe only handles the
queuing of new target points given a predefined path and assumes
the master robot can handle the actual driving of each robot
(follower and main) to the points. In order to make this possible,
the PathSplitter algorithm ensures the follower robot is in view
of the main robot at all times so accurate localization can occur.
Finally, the state machine has recovery states as needed.

After running experiments in both a physical and a simulation
environment, we determined that FollowMae is effective at accom-
plishing the task of guiding both robots along a predefined path
accurately, but because of the iterative nature of the following
process, it is relatively slow. Our results highlight the potential for
using existing autonomous driving technology in robot navigation
and suggest promising directions for future research in this
area, specifically for use in autonomous wheelchairs or in the
warehouse industry.

Index Terms—autonomous mobile robots, sensorless robots

I. INTRODUCTION

A handful of techniques already exist for the task of follow-
ing humans [1], objects [2], and other robots (not technically
following - just coordinated motion) [3]. Current approaches
to robot following exhibit control over only one robot as the
other element (what is being followed) are typically not able to
be controlled by the robot. Think of a human-following robot,
for example, the software on the robot simply cannot adjust
the motion of the human. Furthermore, by controlling only one
robot, we necessitate having all the facilities for autonomous
control existing on only one robot. In general, we have two
robots that are both autonomously controlled and therefore can
adjust the motion of both as needed. In addition, only one of

the robots needs autonomous sensing capabilities so long as it
can also localize the other robot. This results in an interesting
situation where we have one, relatively standard, autonomous
mobile robot and another very barebones robot that together
are able to make complex autonomous maneuvers.

In order to maintain a manageable but still broad scope,
one of the constraints for this project that we have established
was the fact that FollowMe by itself would not be able to
perform autonomous driving. At its core, FollowMe is more
of a middleware than a specific navigation framework. In order
to use it, one must independently perform the localization of
both the main and follower robots. This is relatively trivial with
the variety of available technologies (as described in Section
IV, we used SLAM [4] and computer vision with AprilTags
[5] to perform both of these tasks) but it allows users of
FollowMe to decide for themselves how this localization will
be done. Similarly, FollowMe requires the user to supply at
least two instances (one for each robot) of some navigation
system capable of routing a robot to a specific goal position.
All of these processes will run on the main robot.

Therefore, we define the robot following problem with the
following four constraints:

e There must be at least one “main” robot and one “fol-
lower” robot

o The follower robot(s) may not possess/read from any
sensors to aid in localization and navigation (other than
data logging for evaluation)

o The main robot must have a means of locating the fol-
lower robot through some onboard device (i.e. a camera)

o The follower robot must not perform any navigation
calculations itself. All processing (except converting a
generic velocity command to wheel speeds) must be done
on the main robot

To solve the given problem, we have developed the Fol-
lowMe system, which is made of three components. At the
core is the state machine coordinator, which allows the robots
to follow a path in a sequential manner, with only one robot
moving at a time. Given a full path, this sequence of motions is
dynamically determined by the PathSplitter algorithm, which
breaks the full path into segments that can be tackled one
by one. The segments themselves are determined using an
iterative approach that ensures the follower robot remains in
view of the main robot throughout the entire duration of each



robot’s driving. Because of the fact that we do not know
exactly how well each robot will follow the path, at the
end of each segment an evaluation state is reached in which
the parameters for the PathSplitter are recalculated with the
goal of maintaining a steady following distance. This makes
FollowMe an end-to-end system that can accomplish complex
maneuvers carefully.

Beyond this application, the concepts can be applied to a
more generic question: how can the data collected by sensors
on one robot be utilized by another, nearby robot? Say we
design a system where one robot can be equipped with all
the necessary sensors for complete autonomous control. More
than likely, that data can be usable by another robot that
doesn’t have extra sensors on it. The implications of this could
be low-cost robotic fleet management: one mobile sensing
unit can inform multiple “dummy” robots. Similarly, this
technique can be potentially useful in the future of semi-
autonomous motorized wheelchairs. Users of such wheelchairs
who are visually impaired or simply wish to be guided can
let a more advanced robot guide them while keeping their
actual wheelchair itself simple and cheaper. The same can be
said about potential search-and-rescue operations. While these
reach goals are purely hypothetical, we aimed to design an
adaptable framework for this two-sided control of robots with
this project where one robot can be equipped with multiple
sensors and the other can have virtually none, and the past
motion of each robot informs the future motion of each.

In summary, this paper makes the following three contribu-
tions:

e Define the robot following problem and observe two

technical challenges.

o We propose a modular FollowMe system which consists
of three components: the state machine coordinator, the
PathSplitter, and the evaluation state. This makes Fol-
lowMe an end-to-end system that can accomplish com-
plex maneuvers. We have open-sourced the code use for
writing and testing FollowMe in this research, including
the whole ROS project to control both the physical and
simulated robots in Python. !

o We evaluate the proposed system in both simulated and
real-world environments. The FollowMe system shows
stable following performance with low system overhead.

The rest of the paper is organized as follows. Section II
presents the observations of technical challenges in robot
following problem. Section III presents the proposed FollowMe
System. Section IV presents the implementation of the Fol-
lowMe, while Section V presents the evaluation . Section VI
describes the related work and applications of the research.
Section VII concludes the paper.

II. OBSERVATIONS
Due to mechanical issues in the physical robots’ designs,
we found odometry based on the wheel encoders to be

IThe code for FollowMe is available at https:/github.com/Torreskai0722/F
ollowMe.

unreliable [6], [7]. As a result, we opted to use HECTOR
SLAM’S [8] ScanMatcher utility to do the localization solely
based on LIDAR data. With this in mind, the FollowMe system
only requires some form of localization, which is left up to
the implementation. In most cases, odometry will work fine,
but for our specific circumstance, this observation allowed us
to make the system broader and fit within our goal (Section
III).

Another source of issues that we noticed was commu-
nication delays. To accommodate for this, the behavior of
FollowMe can be modified via several constants. Specifically,
K_SPEED_ADJUST and DEFAULT_MAX_LOOKAHEAD di-
rectly influence how the main robot moves ahead relative to the
follower robot, therefore being able to compensate for delays.
We ran a set of tests to measure the actual network latency on
the physical robots (communication via a shared local WiFi
network) as a means of determining a good starting point
for the aforementioned constants both in the simulated and
physical setting.

III. FOLLOWME DESIGN

A. Overview

FollowMe has been designed to be as modular and platform-
independent as possible. That is, with minimal changes, the
same FollowMe software should be able to coordinate different
pairs of follower and guidance robots. This is reflected by the
decisions made in our system design. It is partly inspired by
many traditional human following techniques for Autonomous
Mobile Robots like [1] and [9]. In these, there is one robot
that aims to follow a human by running some form of closed-
loop control across a target distance (between the human and
the robot) and the speed at that the robot is driving. On top
of that, an additional steering controller is employed to keep
the robot driving in the correct direction. While these systems
are technically autonomous, for all intents and purposes, they
are not following paths. Instead, they are simply reacting to
real-time changes in the human’s motion, as that is the only
information the robots are given.

For our application, however, we are in full control of both
robots and the main robot (which is guiding the follower robot)
is operating autonomously. If a target path is given to the main
robot, FollowMe’s goal is to use that path to create target
checkpoints for both robots sequentially along the given path.
We operate on the assumption that the main robot is capable
of autonomously driving itself to a target location, and given
a constant stream of localization input, it can calculate the
driving velocities for the follower robot to do the same. By
doing so, the problem is simplified significantly. Now, the
goal of FollowMe is to create several new paths for the main
robot and the follower robot to each follow and to ensure
that the main robot is able to constantly ’see” (depending on
which method is being used to localize the follower robot) the
follower robot.

Because of the unpredictable nature of how the follower
robot may act given a specific command, the sequence of
paths for the main robot path must be dynamically modified
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Fig. 1. Overview of the FollowMe system.

to do this. Because of these constraints, we decided that
a state machine node will coordinate the localization and
navigation goals of both robots. The method of localizing and
navigating to the aforementioned goals is depended on the
implementation, and as such the system only assumes that it
can get such data, not how.

The overview of FollowMe is shown in Fig. 1. It is up to
the implementation to localize each robot and to have an open
function that can autonomously drive itself to a specific target
point. FollowMe is the process that is sitting in the middle
that calculates those target points and therefore never has to
directly interface with hardware, making it very modular.

B. Methodology

When FollowMe is invoked, it requires the following pieces
of data: the desired path for the main robot to travel (with the
intention that the follower robot will end up close behind)
and then a constant stream of localization data for both
robots in world space. It also requires access to functions to
send a target point for each robot to drive to. The system
which calls these functions is comprised of three components.
The first is the State Machine Coordinator which handles
the automation of each robot and allows for the sequential
following nature of FollowMe. In order for the segments of the
path to be determined, the PathSplitter Algorithm is used to
calculate target points for each robot. It uses a technique called
FOV Matching to ensure that the follower robot is in view
and thus able to be localized continuously during the path.
When a new segment is determined, the coordinator sends the
following commands to each robot one by one and then enters
the Evaluation State in which the PathSplitter’s parameters
are adjusted to best hold a steady following distance. Each
component is described in detail in what follows.

1) State Machine Coordinator: Fig. 2 shows the full State
Diagram for the FollowMe system including the transitions

between the states. FollowMe starts idle, waiting for it to
receive the full path. Once it is received, the PathSplitter is
used to determine the first segment for the main robot, and the
main robot is commanded to that point. Once it is reached,
the follower robot is commanded to the previous position of
the main robot. After this, the evaluation state is entered in
which the PathSplitter parameters are adjusted and then used
again to determine the next segment. This sequential process
continues until the main robot reaches its goal position. If
the evaluation state determines that the progress is beyond the
point of return/unable to be fixed, the recovery state is resorted
to. The recovery state is equivalent to the naive solution which
is outlined in the next section about the PathSplitter algorithm.

2) The PathSplitter Algorithm: FollowMe takes in an initial
path to an end goal that the Main robot’s navigation layer
calculates. Before allowing the robot to follow this path,
FollowMe sequentially splits up the path at various intervals
and commands the main robot to one location and the follower
robot to the previous location of the master robot. While
doing so, FollowMe ensures that the Follower Robot will
remain in the FOV of the Main robot so that continuous
localization can occur because the Follower robot’s location
is only known when it is seen by the main robot’s sen-
sors (be it a camera or anything else). After each iteration,
FollowMe evaluates how well the follower maintained a
PREFERRED_FOLLOWING_DISTANCE and adjusts the fol-
lowing gains accordingly. This results in an adaptable solution
to the following problem. If despite these adjustments, the
robots remain underperforming, a recovery mode is activated
in which the robots resort to the following naive solution.”

The Naive Solution: We began by experimenting with the
most intuitive approach: allow the main robot to calculate a
path for itself and have the follower robot copy the same
velocity commands that are calculated for the main robot. This
is accomplished quite easily through the form of subscribing
to the same Twist2D ROS Topic (this is obviously dependent
on the implementation, but the former option is consistent with
what is described in Section IV).

In practice, this method had several issues. Initially, we
thought there would be inconsistencies between movements
of the two robots. However, because the dimensions and
wheelbases were roughly the same, and because the motors
were running accurate PID Loops, the robots were more or
less equivalent in terms of how they executed a given velocity
command. The actual issues actually came in the form of a
fundamental issue with this method. Even if the follower robot
was able to perfectly replicate the behavior of the main robot,
if the two robots don’t start in the same position they will not
follow the same path.

Throughout the testing of the naive solution, when we varied
the starting locations even slightly, we would have issues with
either a) the main robot losing sight of the follower robot, or
b) the follower robot executing the same path at an odd angle,
ultimately ending in the wrong place.

Fig. 3 demonstrates both of these issues in ideal situations.
That is, with the assumption that the follower robot is in view
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Fig. 3. Two examples of master/follower robot pairs that demonstrate the
variability in ending position presented by minor changes in starting position
by the naive solution

of the main robot’s cameras at all times and the follower
robot can perfectly replicate any action the main robot does
(both of which are unrealistic assumptions). When the follower
robot begins at a different pose, perhaps at a slight angular
offset, than the main robot (a very reasonable assumption), the
endpoints of each path are vastly different. Both of these two
outcomes are demonstrated by the Ax displacement values.
In fact, in the figure, the final distance between the follower
and main robots is nearly double that of before the motion.
As a result, some more sophisticated logic is necessary to

coordinate the motion.

Those hypothetical examples demonstrate that the naive
solution does work in those select situations when the robots
start near each other. Instead, what if we first move the
follower and master robot to be next to each other, and then
just follow the path naively?

By this same logic, we don’t need to use the naive solution
at all. If we just sequentially move the robots to positions
along the path where they are near each other, then we could
have the most accurate following process. We can choose a
point along the path of the main robot, drive it there, and then
command the follower robot to the original starting pose of
the main robot. The local routing of each robot would use the
navigation function based on the implementation.

Once again, though, this has some issues in practice.
Namely, almost all navigation stacks assume that a constant
stream of localization data will be available. While the naviga-
tion stack for the main robot will have this (either via SLAM
[4], odometry, or any other method as set up by the specific
implementation), the navigation stack for the follower robot
may not. This is because when the main robot will be moving
we can’t ensure that the follower robot will remain in view of
the main robot throughout the duration of the path.

To solve this problem, we have the first element of the
PathSplitting algorithm: FOV Matching. This is visualized
in Fig. 4. You can see the application of the two main
functions in the PathSplitter: angle_to_midpoint and
fit_in_fov. Used together, these functions return a new
point for the master robot to target where the entire path of the
follower robot will remain in the FOV. First, we seek a certain
”Lookahead Distance” into the path, based on the acceptable
distance between the main and follower robots for accurate
localization. Then, we calculate the angle that the robot would
need to face at that point if the sensor were to point directly
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Fig. 4. Visualization of the FOV Matching Routine

at the midpoint between the main robot’s original pose and
the follower robot’s original (also current) pose. This means
that the main robot would end up in a position where it can
equally see where the follower robot starts and where it aims
to end up (the starting position of the main robot). We can do
a check to ensure that neither the main robot nor the follower
robot will be out of the FOV (both will be at equal angles
from the center of the sensing zone) and if it is not, we will
recursively search again with a larger lookahead distance.

This approach allows us to systematically find the shortest
viable distance that the master robot can go ahead into the
path where the follower robot can be tracked throughout its
entire journey to the main robot’s original position.

After commanding each robot to its next points, we arrive
at the final component of FollowMe: the evaluation state.

3) Evaluation State: Throughout the duration of the
path, the absolute distance between the main robot
and the follower robot’s poses is measured. A constant
PREFERRED_FOLLOWING_DISTANCE is defined before
running FollowMe. In the evaluation State, the percent error
between the true average distance and the target distance
is calculated, and the FOLLOWING_SPEED (a parameter
for the actual navigation node - not for FollowMe) and
LOOKAHEAD_DISTANCE parameters for the PathSplitting
function are linearly scaled. This results in self-correcting
motion as the path continues to be followed.

IV. IMPLEMENTATION

We implemented the FollowMe system on two systems to
test its usability. One was a set of physical robots running
ROS and another was a simulated environment via the Gazebo
Simulator for ROS.

Main Robot Follower Robot

| Computing Device | Raspberry Pi 4 |
| OS & Software Version | Ubuntu 18.0.4 - ROS Melodic | Ubuntu 18.0.4 - ROS Melodic |
| Dual DC Motor FWD | Dual DC Motor FWD |

| RPLidar S1 | - |

Component

| NVIDIA Jetson Xavier NX

| Drivetrain

| Localization of Self

Localization of Other Generic USB Camera -

Fig. 5. Front of physical Main Robot

A. Physical Testing

For this project, we built from scratch two modified versions
of the HydraOne Computing Platform [6], one for the Main
robot and one for the Follower robot. Each is a similar
differential drive robot. The following is an overview of the
differences between the robots.

1) Main Robot: The main robot is very similar to the orig-
inal HydraOne platform, apart from a few minor differences.
It is running a Jetson Xavier NX on Ubuntu 18.0.4 with
Robot Operating System(ROS) [10] Melodic. Installed on it
are an RPLidar S1 [11], two USB webcams (oriented 180
degrees apart), and 2 brushless DC motors and powered by
Chip Robotics motor controllers [12]. The front two wheels
are direct-driven Mecanum wheels and the back wheel is a
free caster wheel. See Fig. 5 and Fig. 6.

For the software, we have written our own differential drive
controller which takes a ROS Twist message and commands
the Chip controllers library [12]. We implement Hector Map-
ping [8] using the RPLidar ROS SDK for localization, which is
fed into move_base [13] as the navigation layer for the main
robot. We run a duplicate navigation layer for the follower
robot on the main robot computer ensuring that the only
processes running on the follower only pertain to the individual
motor controls of that respective robot.

The computing device on the main robot is an NVIDIA
Jetson Xavier NX Developer Kit running Ubuntu 18.0.4 and
ROS Melodic.

2) Follower Robot: The follower robot is similar to the
main robot but simply without the sensors. Here, the drive-
base is identical, with two brushless DC motors powered by
the same Chip Robotics controllers [12] in the front with
Mecanum wheels attached and a free-spinning back caster
wheel. This robot does not have any of the external sensors
that the main robot has, but we have attached 4 AprilTags [5]
to each of the 4 sides (90 degrees apart) to the robot. See Fig.
7.



Fig. 7. One side of physical Follower Robot

The computing device is a Raspberry Pi 4. The software
of the follower robot has the same differential drive controller
as the main robot and nothing else. For networking, we used
ROS over a local WiFi network. The master node was run on
the Main robot.

In order to localize the follower robot, the main robot
is running the ROS AprilTag node, which publishes a ROS
Transform (TF) [14] transformation between the camera and
the detected tag (see Fig. 9), is used in conjunction with
our TF Tree (see Fig. 10) which establishes static transforms
between each of the tags and the center of the follower
robot as well as between the camera and the main robot
to accurately determine where the follower robot is. Fig. 11
demonstrates this result with base_1link as the center of
the main robot and follower_link as the center of the
follower robot. Note that we have two cameras on the main
robot but a single camera_switcher.py script we wrote
handles the switching of both TF [14] transforms and topics
for the AprilTag detection system.

Combined with the localization data given from the Main
robot’s SLAM [4] process, we get a result with a map and
two localized robots like that of Fig. 12. Note that every part
of this localization code for both robots is running only on the
master robot’s computer.

The computer on the follower robot is a Raspberry Pi 4B
running Ubuntu 18.0.4 and ROS Melodic.

3) Course/Setup: We set up a course as seen in figure 5 for
testing the FollowMe system on our physical robots. This was
assembled as an arbitrary arrangement of cardboard boxes to
simulate a simple bounded region with protrusions to make
the path-planning process slightly rigorous.

Fig. 8. Physical course setup with Follower and Main robots

Fig. 11. Localization of Follower Robot via AprilTags



Fig. 12. Full localization of both Follower and Main Robots
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Fig. 13. Follower Robot through the view of the camera on the back of the
Main Robot

B. Simulation Testing

The goal of our simulation environment was to mimic as
accurately as possible the real environment that was created
in the lab. We did this by running a combination of ROS
melodic with the Gazebo [15] ROS simulation environment
which handled physics and rendering. Because this was still
using ROS, most of the software written for the physical robots
could be reused. This is in part due to FollowMe’s modular
nature, but also because we designed the simulation to be
essentially a recreation of the robots built in the lab.

We built two robots in the simulation using two identical
differential drive models and chose one to be the main robot
and the other to be the follower. The main robot had a
simulated LIDAR placed atop it and a back-facing camera at
the rear. Fig. 13 shows what the view from that camera looks
like, showing the Follower Robot.

The second robot had four AprilTag models (with O mass)
attached rigidly to the sides of the robot in the same fashion
as the physical follower robot.

The course we used was the sample TurtleBot [16] "House”
world although nothing else in the simulation environment was
from the TurtleBot ecosystem. This allowed us to have a rela-
tively complex environment for the mapping to happen in. Fig.

Follower Robot \

¢ Camera view

5

Fig. 14. The Main and Follower robots together in the Gazebo environment

Main Robot

— shows both robots together in the simulation environment
and the localization of both robots being performed.

Nearly everything else was identical to the physical robot
setup, with two instances of the ros_navigation/move_base
node running, one for each robot, and hector_slam performing
the mapping.

V. EVALUATION

For evaluating FollowMe, we established the following met-
rics: Path Completion, Distance Between Robots, and System
Utilization. Together, these test the usefulness and efficiency
of the framework.

A. Path Completion

Path Completion is straightforward - just a qualitative way
of measuring how well robots using FollowMe completed their
paths. As described previously, the first (physical robot) imple-
mentation (described in Section IV) struggled with progressing
through the typical following states and thus had to resort to
the “recovery mode” each time. This did tell us, however,
that the sensitivity of when to transition to the recovery mode
was adequate and the recovery mode (see Section III - Naive
Solution) worked as expected. We determined that this was an
issue with the physical constraints of the robot and therefore
the same configuration worked quite well when simulated.

In the simulation environment (also described in Section
IV), we were more successful in replicating the preferred
behavior of the FollowMe state machine. Each state progressed
in the expected fashion and the robots were successful in
following each other across multiple different paths. Fig. 15
is an example of a simple path being followed successfully.

B. Distance Between Robots

In order to quantitatively measure the performance of Fol-
lowMe, we track the distance between the follower and main
robot poses as a function of time. In the graph in Fig. 16
it is shown that through nearly the full following process
the distance between the robots stays very steady (at around
0.55 meters). Only near the end of the path do the robots



Fig. 15. Result of a Basic Following Path
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Fig. 16. Plot of the distance between robots in meters vs time in seconds
into the FollowMe process. Various measures are included to demonstrate the
relative stability of the distance measurement.

come closer together and this is likely a result of the main
robot reaching its target but the follower robot still has a part
of its path remaining. This is reflected by the distance only
decreasing and not increasing past the 0.55 meters point after
the main robot stopped. This data was recorded on the physical
robots performing a path similar to the one in Fig. 12.

C. System Utilization

System Ultilization measures both the average CPU usage
and the memory usage of the FollowMe process during sim-
ulation. These metrics were measured using the psutil [17].
The baseline was the Gazebo simulation running by itself
along with all the necessary components for robot function
and navigation (i.e. two navigation layers, SLAM, odometer,
etc). We then measured the usage during an instance of
running the FollowMe scripts on top of the baseline. The
usage vs time plot is in Fig. 17. From the graph, we have
concluded that FollowMe is reasonably performant but for the
sake of scaling, it may be necessary for further performance
improvements to be made. Generally, the program only used
around 10-20% of the resources available, which considering
the fact that FollowMe cannot be run alone (it needs external
navigation nodes to be running) we can conclude that we want

FollowMe Performance == = % memory used = % cpu used
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Fig. 17. Plot of CPU and memory usage percentages in a full FollowMe
Routine.

to minimize the usage even further. A likely cause for the spike
seen at around 7.5 seconds is a repeated failed lookup with the
PathSplitter as the path curved at that point and the function
had to be recursively called multiple times.

D. Evaluation Summary and Limitations

In summary, FollowMe proved to be effective at completing
the original goal of effectively guiding the follower robot
along the path of the master robot. Similarly, the method
of updating the path following parameters proved effective
to make the following distance be consistent throughout the
following process. Although the CPU utilization was relatively
high at times, it is important to note that the project was
defined with the assumption that the main robot will have
a reasonably capable controller. This is due in part to the fact
that it will have to run multiple navigation instances, one for
itself and for the follower. Because of this, we have determined
the performance to be acceptable for our tests. This tradeoff
is revisited in the following two sections.

VI. RELATED WORK AND APPLICATIONS
A. Related Works

The problem we have defined, where one robot outfitted
with multiple sensors guides another robot with no sensors,
does not have any direct parallels with existing research that
we could find. There do exist a handful of approaches to
similar problems that can be grouped into two types. While
neither is exactly like FollowMe’s problem, elements of our
final system can be found in current techniques for both forms
of the following problem.

One form is where there is only one robot in the entire
system that acts as the “follower” which is set to follow
one external object which it has no control over. Examples
of this include methods of following people ( [I] and [9])
and, more generically, objects [2]. The techniques in these
papers mainly focus on the central idea of maintaining a target
distance between the robot and the target object, whatever that
object may be. The means for measuring this distance are
abstracted but generally, a PID [18] controller is employed to



maintain that distance. Another is used to maintain a steering
angle. FollowMe’s PREFERRED_FOLLOWING_DISTANCE
functionality in the Evaluation State is similar to this.

The other similar problem is where there are multiple
robots but they aren’t necessarily following each other but
moving in a coordinated fashion: swarm movement in other
words. Critically, each robot is outfitted with sensors, whereas
the key goal of FollowMe is for one of the robots to have
none. A prime example is research on the coordination of
spacecraft formations. [3]. In this case, each is essentially
following its own path with its own navigation logic. The
coordinated nature comes in the fact that when an obstruction
or unexpected occurrence appears, the main details of the path
(i.e. waypoints) are all decided by one of the robots, and the
rest (i.e. the intermediate points along the new trajectories)
is recalculated by each ship’s individual navigation system.
This is somewhat how the PathSplitter algorithm in FollowMe
works, in which the general details (new target for each robot)
are calculated by the main robot but the navigation firmware
for the follower robot is also being run on the main robot with
FollowMe.

Existing research on similar problems has aided in the
development of FollowMe, but the problem our novel system
seeks to solve is itself a novel one. The following applications
for it are reasoning of why this problem is relevant and
important for mobility.

B. Applications

The motivation behind this project was the potential for real-
world applications of this system in Mobility for Wheelchairs
as well as Industry scenarios.

1) Mobility for Wheelchairs: Originally, the goal of the
FollowMe Framework was for use to assist those with electric
wheelchairs both in low and high-stakes scenarios. However,
due to the nature of the relatively slow iterative following
process, low-stakes scenarios seem to be the most productive
and safe use case.

A low-stakes scenario could be one where someone in a
cost-effective wheelchair, one that does not have complex
sensors or powerful computers, could employ high-quality au-
tonomous navigation software using a guidance robot. Trivial
tasks like guiding a visually impaired person through a park
can be accomplished through this.

Electric wheelchairs are actually quite commonplace in
today’s society. A quick search on ElectricWheelchairsUSA
for options of such devices found [19], [20], and [21] with
prices of $4209, $3699, $6549, respectively. Autonomous
wheelchairs are not yet commercially available, although re-
searchers at MIT’s CSAIL [22] did create one that, while
worked, was comprised of several components whose costs
far exceeded those of existing electric wheelchairs.

A hypothetical high-stakes scenario could be one of search-
and-rescue. Imagine a situation in which there is a person
inside a burning building in an electric wheelchair. This
wheelchair is equipped with controls to drive and turn but has
no way of performing its own perception. The processor on the

wheelchair similarly is not necessarily capable of performing
the autonomous tasks to escape the building. Instead, we can
use FollowMe, which only requires a method of communica-
tion with the wheelchair. A robot with FollowMe is sent into
the building and is able to perceive its own surroundings and
adaptively guide the wheelchair to safety, all while firefighters
can be focused on fighting the fire and helping other victims.

2) Industry: In a warehouse setting, FollowMe could be im-
plemented for autonomous fleet management The experiments
in this paper have proven that it is indeed possible to guide at
least one robot through localization from another through Fol-
lowMe with minor additional CPU overhead. Given this, we
can reasonably assume that FollowMe is scalable enough such
that we could use it for more complex navigation tasks with
more than one follower robot. Because the implementation is
not dependent on what method of navigation is being used,
the path-following approach is not necessary, and instead,
FollowMe’s localization methods could be used

VII. CONCLUSION

In conclusion, the FollowMe project met the goals we
established for it. Our framework is lightweight yet effective
at following complex paths on multiple robots. It is capable
of maintaining a stable following distance on those complex
paths. While there is room for improvement in terms of
performance, both speed and actual computational efficiency,
the concept behind FollowMe and the software in its current
state both have very real applications for mobility.
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